oroshigane, a new segment polarity gene of Drosophila melanogaster, functions in hedgehog signal transduction.
نویسندگان
چکیده
Here we describe a new segment polarity gene of Drosophila melanogaster, oroshigane (oro). Identified as a dominant enhancer of Bar (B), oro is also recessive embryonic lethal, and homozygous oro embryos show variable substitution of naked cuticle with denticles. These patterns are distinctly similar to those of hedgehog (hh) and wingless (wg) embryos, which indicates that oro functions in determining embryonic segment polarity. Evidence that oro function is involved in Hh signal transduction during embryogenesis is provided by its genetic interactions with the segment polarity genes patched (ptc) and fused (fu). Furthermore, ptcIN is a dominant suppressor of the oro embryonic lethal phenotype, suggesting a close and dose-dependent relationship between oro and ptc in Hh signal transduction. oro function is also required in imaginal development. The oroI allele significantly reduces decapentaplegic (dpp), but not hh, expression in the eye imaginal disc. Furthermore, oro enhances the fui wing phenotype in a dominant manner. Based upon the interactions of oro with hh, ptc, and fu, we propose that the oro gene plays important roles in Hh signal transduction.
منابع مشابه
The hedgehog gene family in Drosophila and vertebrate development.
The segment polarity gene hedgehog plays a central role in cell patterning during embryonic and post-embryonic development of the dipteran, Drosophila melanogaster. Recent studies have identified a family of hedgehog related genes in vertebrates; one of these, Sonic hedgehog is implicated in positional signalling processes that show interesting similarities with those controlled by its Drosophi...
متن کاملThe Drosophila smoothened Gene Encodes a Seven-Pass Membrane Protein, a Putative Receptor for the Hedgehog Signal
Smoothened (smo) is a segment polarity gene required for correct patterning of every segment in Drosophila. The earliest defect in smo mutant embryos is loss of expression of the Hedgehog-responsive gene wingless between 1 and 2 hr after gastrulation. Since smo mutant embryos cannot respond to exogenous Hedgehog (Hh) but can respond to exogenous Wingless, the smo product functions in Hh signali...
متن کاملDrosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes.
The Drosophila segment polarity gene cubitus interruptus (ci) encodes a zinc finger protein that is required for the proper patterning of segments and imaginal discs. Epistasis analysis indicates that ci functions in the Hedgehog (Hh) signal transduction pathway and is required to maintain wingless expression in the embryo. In this paper, the role of the Ci protein in the Hh signaling pathway i...
متن کاملRegulation of wingless transcription in the Drosophila embryo.
The segment polarity gene wingless (wg) is expressed in a complex pattern during embryogenesis suggesting that it plays multiple roles in the development of the embryo. The best characterized of these is its role in cell pattening in each parasegment, a process that requires the activity of other segment polarity genes including patched (ptc) and hedgehog (hh). Here we present further evidence ...
متن کاملA directed mutagenesis screen in Drosophila melanogaster reveals new mutants that influence hedgehog signaling.
The Hedgehog signaling pathway has been recognized as essential for patterning processes in development of metazoan animal species. The signaling pathway is, however, not entirely understood. To start to address this problem, we set out to isolate new mutations that influence Hedgehog signaling. We performed a mutagenesis screen for mutations that dominantly suppress Hedgehog overexpression phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 145 4 شماره
صفحات -
تاریخ انتشار 1997